top of page
Search

# Tableau data in use: How to compute Login frequency

Updated: Aug 18, 2021

The modern business has a lot of touch points with its customers and the environment it operates in. All these point of interactions leave some trails which can tell a story on the health of business relationship with customers. This could be buried in different data sources ranging from social interaction data, point of sale data, supply chain data, finance data, marketing data or even log in data from various data monetization platforms.

The goal in this article is exploring a simple technique of computing login frequency. We’re assuming the position of IT manager of ‘Brand X’, which has recently launched a portal from which different subscribers can consume various industry metrics through a uniquely assigned login credentials.

### Problem

As the person in charge of this portfolio, I would like to understand how frequently my clients use the portal, with a broad understanding of the metrics at different categories like Segment. This will help me understand whether the portal is delivering the projected numbers at the beginning of the project.

Using Superstores data set, my target columns for this article are ‘Order Date’ now renamed ‘Log in Date’, ‘Customer ID’ and ‘Segment’. Where ‘Customer ID’ is a unique identifier for each customer.

Connect Superstores data set to the Tableau app and follow the guideline below.

### Step 1: Compute First & Last log in date for every customer

Using the formula below.

The time unit could vary between, days, months, years, weeks etc. However, in this article we’ll compute time lapsed in months using the formula below.

### Step 3: Count number of times user logged in

Using the calculation below.

Now, that we’ve the number of months the customer has been active and the number of time he or she has logged into the portal. We can compute the login frequency using the formula below.

Rounding our calculation to the nearest integer we’ve.

### Step 5: Lets build a simple chart to present our findings

• First drag the measure field Frequency bin to the dimension area.

• Drag again now dimension field Frequency bin to the Columns shelf.

• Drag count distinct Customer ID to the Rows shelf.

• Drag dimension field Segment to the filters, Show Filter.

Adding Table calculation by computing ‘Percent of Total distinct count of Customer ID’ we’ve.

Using the quick filter, I can drill down to other segments. See below.

With this simple view, I can fully understand how actively my customers are using the portal, reach out to customers with fewer logins and seek to understand the challenges they face, monitor whether this problem is manifested in other customer categories and address the issues accordingly. With good understanding of my data as the IT manager, I can see crisis and respond before it’s too late.

If you would like to receive more of the Tableau tips, kindly join our mailing list by subscribing below.